

Advance Computer Architecture (CS501)

Assignment # 01
Fall 2019

Total marks = 20

Deadline Date

12th Nov 2019

Please carefully read the following instructions before attempting assignment.

RULES FOR MARKING
It should be clear that your assignment would not get any credit if:

▪ The assignment is submitted after the due date.
▪ The submitted assignment does not open or file is corrupt.
▪ Strict action will be taken if submitted solution is copied from any other student or from

the internet.

You should consult the recommended books to clarify your concepts as handouts are not enough.

You are supposed to submit your assignment in .doc or docx format.
Any other formats like scan images, PDF, zip, rar, ppt and bmp etc will not be accepted.

Objective:

Objective of this assignment is to increase the learning capabilities of the students about

• Performance Measurement of a processor
• Performance Comparison of processors
• Classification of Instruction Set Architecture for different machines

NOTE

No assignment will be accepted after the due date via email in any case (whether it is the case of
load shedding or internet malfunctioning etc.). Hence refrain from uploading assignment in the last
hour of deadline. It is recommended to upload solution file at least two days before its closing date.

If you find any mistake or confusion in assignment (Question statement), please consult with your
instructor before the deadline. After the deadline no queries will be entertained in this regard.

For any query, feel free to email at:
cs501@vu.edu.pk

mailto:cs501@vu.edu.pk

Questions No 01 10 marks

Suppose we have a program which contains 200 instructions of different types. We want to
execute this program on a 500 MHz processor. The ratio of each type of instruction in the
program as well as clocks per instruction for each type of instruction is given below:

Instruction Type Ratio in program Clocks/Instruction (CPI)

Load/Store 35% 2.5

ALU 55% 1.25

Control 10 % 3

1. Calculate the total execution time required by the processor to execute the program.

2. If CPI for ALU is decreased by 20% and CPI for Load/Store is increased by 10%, then
calculate the execution time.

Solution (A)

 :

 / /

The formula to calculate the execution time

Execution Time IC CPI T

Total Instructions Ratio of Load Store Instructions

=  

= IC for Load Store Instructions

 200 0.35

 70 instructions

 200

Total Instructions Ratio of ALU Instructions

= 

=

= 

=

IC for ALU instructions

 0.55

 110

 200 0.10

instructions

Total Instructions Ratio of Control Instructions



=

= 

= 

IC for Control instructions

 20

,

 /

instructions

Now we will calculate the total clock cycles required to execute each type of instructions

IC for

=

=Total Clock Cycles for Load Store / /

 70 2.5

 175

Load Store CPI for Load Store

clock cycles



= 

=

Total Clock Cycles fo

 110 1.25

 137.5

IC for ALU CPI for ALU

clock cycles

= 

= 

=

r ALU

Tota

 20 3

 60

IC for control CPI for control

c

= 

= 

=

l Clock Cycles for Control

 lock cycles

() ()

()

6 6

9

0.00

 1 /

1/ 500 10 2 10

2 10

 ,

CPU frequency

seconds

seconds

Now finally we will calculate the execution time

Execution Time ET Total Clock Cycles

−

−

=

=

 

= 

= 

Time required in seconds for each clock cycle T

() ()6

9 6 9

 1/

 175 137.5 60 1/ 500 10

 372.5 2 10 1/ 500 10 2 10

 745 10

CPU Frequency

seconds

seconds seconds− −

= + +  

=     

= 

=
9

seconds−

= 745 nanoseconds

Solution (B)

()

 20%,

 1.25 100 20 /100

 1.25 0.8

 1

If decrease the average CPI for ALU by the new average CPI

CPI

If average

=  −

= 

=

New CPI for ALU

()

 / 10%,

 / 2.5 100 10 /100

 2.5 1.1

 2.75

CPI for Load Store instruction is increased by new average CPI

=  +

= 

=

New CPI for Load Store

() ()

() ()

6

8

9

9

,

(.) 70 2.75 110 1 20 3 1/ 500 10

 192.5 110 60 / 5 10

 362.5 2 10

 725 10

CPI

Hence new execution time will be

ExecutionTime E T x seconds

seconds

seconds

seconds

−

−

=  +  +  

= + + 

=  

= 

= 725 nanoseconds

Questions No 02 10 marks

Write assembly language program for 0-address and 1-address machines to evaluate the
following expression.

D = A(B+C) – 2AC/B + C2

Note: A, B, C and D are memory labels.

Solution A (0-Address Code)

PUSH B

PUSH C

ADD ; gives B+C

PUSH A

MUL ; gives A(B+C)

PUSH 2

PUSH A

MUL ; gives 2A

PUSH C

MUL ; gives 2AC

PUSH B

DIV ; gives 2AC/B

SUB ; gives A(B+C) - 2AC/B

PUSH C

PUSH C

MUL ; gives C2

ADD ; gives A(B+C) - 2AC/B + C2

POP D

Solution A (1-Address Code)

LDA C ; loads the value stored at memory location C in Accumulator

MULA C ; gives C2

STA X ; stores C2 at memory location X

LDA A ; loads the value stored at memory location A in Accumulator

MULA C ; gives AC

MULA 2 ; gives 2AC

DIVA B ; gives 2AC/B

ADDA X ; adding 2AC/B with C2 stored in X gives 2AC/B + C2

STA Y ; stores 2AC/B + C2 at memory location Y

LDA B ; loads the value stored at memory location B in Accumulator

ADDA C ; gives (B+C)

MULA A ; gives A(B+C)

SUB Y ; subtracts 2AC/B + C2 from A(B+C)

STA D ; stores the result at memory location D

